Visualisation and subsets of the chemical universe database GDB-13 for virtual screening

نویسندگان

  • Lorenz C. Blum
  • Ruud van Deursen
  • Jean-Louis Reymond
چکیده

The chemical universe database GDB-13, which enumerates 977 million organic molecules up to 13 atoms of C, N, O, S and Cl following simple chemical stability and synthetic feasibility rules, represents a vast reservoir for new fragments. GDB-13 was classified using the MQN-system discussed in the preceding paper for the analysis of PubChem fragments. Two hundred and fifty-five subsets of GDB-13 were generated by the combinatorial use of eight restrictive criteria, including fragment-like ("rule of three") and scaffold-like (no acyclic carbon atoms) filters. Virtual screening for analogs of 15 commercial drugs of 13 non-hydrogen atoms or less shows that retrieving MQN-neighbors of a query molecule from GDB-13 or its subsets provides on average a 38-fold enrichment in structural analogs (Daylight-type substructure fingerprint Tanimoto T (SF) > 0.7), and a 75-fold enrichment in shape-similar analogs (ROCS TanimotoCombo score > 1.4). An MQN-searchable version of GDB-13 is provided at www.gdb.unibe.ch .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovery of α7-Nicotinic Receptor Ligands by Virtual Screening of the Chemical Universe Database GDB-13

The chemical universe database GDB-13 enumerates 977 million organic molecules up to 13 atoms of C, N, O, Cl, and S that are virtually possible following simple rules for chemical stability and synthetic feasibility. Analogs of nicotine were identified in GDB-13 using the city-block distance in MQN-space (CBD(MQN)) as a similarity measure, combined with a restriction eliminating problematic str...

متن کامل

Visualization and Virtual Screening of the Chemical Universe Database GDB-17

The chemical universe database GDB-17 contains 166.4 billion molecules of up to 17 atoms of C, N, O, S, and halogens obeying rules for chemical stability, synthetic feasibility, and medicinal chemistry. GDB-17 was analyzed using 42 integer value descriptors of molecular structure which we term "Molecular Quantum Numbers" (MQN). Principal component analysis and representation of the (PC1, PC2)-p...

متن کامل

Virtual Exploration of the Chemical Universe up to 11 Atoms of C, N, O, F: Assembly of 26.4 Million Structures (110.9 Million Stereoisomers) and Analysis for New Ring Systems, Stereochemistry, Physicochemical Properties, Compound Classes, and Drug Discovery

All molecules of up to 11 atoms of C, N, O, and F possible under consideration of simple valency, chemical stability, and synthetic feasibility rules were generated and collected in a database (GDB). GDB contains 26.4 million molecules (110.9 million stereoisomers), including three- and four-membered rings and triple bonds. By comparison, only 63 857 compounds of up to 11 atoms were found in pu...

متن کامل

Exploring chemical space for drug discovery using the chemical universe database.

Herein we review our recent efforts in searching for bioactive ligands by enumeration and virtual screening of the unknown chemical space of small molecules. Enumeration from first principles shows that almost all small molecules (>99.9%) have never been synthesized and are still available to be prepared and tested. We discuss open access sources of molecules, the classification and representat...

متن کامل

Expanding the fragrance chemical space for virtual screening

The properties of fragrance molecules in the public databases SuperScent and Flavornet were analyzed to define a "fragrance-like" (FL) property range (Heavy Atom Count ≤ 21, only C, H, O, S, (O + S) ≤ 3, Hydrogen Bond Donor ≤ 1) and the corresponding chemical space including FL molecules from PubChem (NIH repository of molecules), ChEMBL (bioactive molecules), ZINC (drug-like molecules), and GD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of computer-aided molecular design

دوره 25 7  شماره 

صفحات  -

تاریخ انتشار 2011